From Wikipedia, the free encyclopedia
Division by zero sources:
- Boyer, Carl Benjamin (1943). "An Early Reference to Division by Zero". American Mathematical Monthly. 50 (8): 487–491. JSTOR 2304187.
- Romig, H. G. (1924). "II. Early History of Division by Zero". Questions & Discussions. American Mathematical Monthly. 31 (8): 387–389. JSTOR 2298825.
![{\displaystyle {\begin{aligned}\left({\sqrt[{\oplus }]{\varepsilon }}\right)^{2}={\frac {1\ominus \delta \ominus \phi }{1\ominus \delta \oplus \phi }}\\[10mu]\left({\sqrt[{\oplus }]{\varepsilon }}\right)^{2}=1\ominus {\frac {S(\phi )}{S(1\ominus \delta )}}\\[10mu]C_{1/2}\left(\varepsilon \right)={\frac {S(\phi )}{C(\delta )}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7261fec01cba35c913bdcc3cfb51cef36565b32a)
Or as angle measures:
![{\displaystyle \cos {\tfrac {1}{2}}\varepsilon ={\frac {\sin \phi }{\cos \delta }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8c144fe1202f140941f5b0384a90099d6979a6f)
![{\displaystyle x=a_{0}+\!{{} \atop {{\big |}\!}}\!{\frac {\ 1\ }{\,a_{1}}}\!{{\!{\big |}} \atop {}}+\!{{} \atop {{\big |}\!}}\!{\frac {\ 1\ }{\,a_{2}}}\!{{\!{\big |}} \atop {}}+\!{{} \atop {{\big |}\!}}\!{\frac {\ 1\ }{\,a_{3}}}\!{{\!{\big |}} \atop {}}+\!{{} \atop {{\big |}\!}}\!{\frac {\ 1\ }{\,a_{4}}}\!{{\!{\big |}} \atop {}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7b4adfe4c41605f783be082bc430f7a3b2dbb8b)
![{\displaystyle x=a_{0}+{1 \over a_{1}+}\,{1 \over a_{2}+}\,{1 \over a_{3}+}\,{1 \over a_{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/20988d62c81b0abf726a5106ec89abf4f39378d9)
![{\displaystyle x=a_{0}+{1 \over a_{1}}{{} \atop +}{1 \over a_{2}}{{} \atop +}{1 \over a_{3}}{{} \atop +}{1 \over a_{4}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4aee87245154e8abdb12fe56f6ec58b4b0e15445)